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1 Introduction

The research summarized in this report has involved a combined theoretical and compu-

tational study of fluid flow that results from the random acceleration environment present

onboard space orbiters (also known as g-jitter). We have focused on a statistical descrip-

tion of the observed g-jitter, on the flows that such an acceleration field can induce in a

number of experimental configurations of interest, and on extending previously developed

methodology to boundary layer flows.

Significant levels of residual accelerations have been detected during space missions in

which microgravity experiments have been conducted [1, 2, 3]. Direct measurement of
these residual accelerations has shown that they have a wide frequency spectrum, ranging

approximately from lO-4Hz to lO_Hz. Amplitudes range from lO-SgE at the*lowest end of

the frequency spectrum, and increase roughly linearly for high frequencies, reaching values

of 10-4gE -- 10-3gE at frequencies of around lOHz (gE is the intensity of the gravitational

field on the Earth's surface). A recent comprehensive survey of the effective acceleration

environment onboard Space Shuttle and the Russian space station Mir is given in ref. [3].

Despite the efforts of a number of researchers over the last decade, there still remain areas

of uncertainty about the potential effect of such a residual acceleration field on typical

microgravity experiments, especially in quantitative terms. An improved understanding

of the response of a fluid system to such disturbances would enable improved experiment

design to minimize or compensate for their influence. Thus the generic goal of our research

has been to gain a sufficiently broad understanding of the effect of g-jitter on fluid flow

and on transport in fluid phases so as to be able to define tolerable levels of residual

accelerations. Compliance with these levels would ensure that the processes under study

are not appreciably distorted by the environment in which a given experiment is conducted

[1, 4, 5]. In addition, it would also be useful to have error estimates of quantities measured
in the presence of residual accelerations, including whenever possible some methodology for

extrapolation to ideal zero gravity.

We have adopted a statistical description of the residual acceleration field onboard space-

craft, and modeled the acceleration time series as a stochastic process in time [6, 7]. The

main premise of our approach is that a statistical description is necessary in those cases in
which the characteristic time scales of the physical process under investigation are long com-

pared with the correlation time of g-jitter, T (the acceleration amplitudes at two different

times are statistically independent if separated by an interval larger than T). Progress has

been achieved through the consideration of a specific stochastic model according to which

each Cartesian component of the residual acceleration field _(t) is modeled as a narrow band

noise. This noise is a Gaussian process characterized by three independent parameters: its

intensity < g2 >, a dominant angular frequency gt, and a characteristic spectral width v -I.
Each realization of narrow band noise can be viewed as a temporal sequence of periodic

functions of angular frequency _t with amplitude and phase that remain constant only for

a finite amount of time (T on average). At random intervals, new values of the amplitude

and phase are drawn from prescribed distributions. This model is based on the following

mechanism underlying the residual acceleration field: one particular natural frequency of

vibration of the spacecraft st/'ucture (gt) is excited by some mechanical disturbance inside

the spacecraft, the excitation being of random amplitude and taking place at a sequence of



unknown(andessentiallyrandom)instantsof time. A further advantageof this model is
that it providesa convenientwayof interpolatingbetweenmonochromaticnoise(akin to
studiesinvolvinga deterministicandperiodicgravitationalfield), andwhite noise(in which
no frequencycomponentis preferred).In the limit T ---*0 with D =< g2 > __finite, narrow

band noise reduces to white noise of intensity D; whereas, for T ---*c_ with < g2 > finite,

monochromatic noise is recovered. This model has been shown to describe reasonably well

many of the features of g-jitter time series measured onboard Space Shuttle. In ref. [7] we

analyzed actual g-jitter data collected during the SL-J mission, and studied in detail a time

series of roughly six hours. A scaling analysis revealed the existence of both deterministic

and stochastic components in the time series. The deterministic contribution appeared at a

frequency of 17 Hz, with an amplitude _ = 3.56 × 10-4gE. Stochastic components

included two well defined spectral features with a finite correlation time; one at 22 Hz with

= 3.06 × 10-4gE and T = 1.09 s, and one at 44 Hz with _ = 5.20 x 10-4gE

and T ---- 0.91 s. White noise background is also present in the series with an intensity

D = 8.61 x 10-4cm2/s 3.

We next summarize our salient results during the period of the contract. Further details

can be found in the publications listed in Appendix B, which are also attached.

In Section 2, we analyze the consequences of a random acceleration field on cavity flows.

Here flow is assumed to be baroclinically induced in the bulk. The average ,vorticity in

the cavity is argued to obey a random walk in time of zero average but with variance

linearly increasing with time. A statistical steady state is reached, the amplitude of which

is given by a stochastic Rayleigh number which we compute. Section 3 addresses the

motion of buoyant particles suspended in an incompressible fluid which is being randomly

vibrated. We compute the average velocity and displacement of the suspended particles.

We have also examined the case of diffusion limited coarsening of a solid-liquid mixture

in connection with the CSLM experiment (Coarsening of Solid-Liquid Mixtures). After

the experiment was flown and the results analyzed, no effect was found in the particle

distribution that could be attributed to g-jitter effects, in agreement with our predictions.
Section 4 summarizes our research on the effects of stochastic modulation on oscillatory

instabilities. We show that the onset of the instability is shifted due to the modulation,

and that the primary bifurcation is to standing waves instead of traveling waves as is the

case in the absence of forcing. This work has led to a subsequent generalization of the

center manifold reduction scheme of classical bifurcation theory to a stochastic setting,

which we also summarize. Finally, Section 5 summarizes more recent research on streaming

flows induced by random vibration of solid boundaries. We have generalized the classical

boundary layer analysis to the stochastic case, and shown that the flow produced by random

vibration can penetrate anomalously large distances into the bulk. In Section 6 we use the

results of section 5 concerning streaming flows near a periodically modulated boundary to

study the morphological stability of a solid-melt boundary growing into a far field flow of

oscillatory nature.



2 Cavity flow induced by a random acceleration field

Analytic solutions to the flow field in a laterally heated cavity have been found in the

limit of large aspect ratio. We have been able to isolate a few important characteristics of

cavity flow that result entirely from the stochastic nature of the acceleration field, and that
would not have been obtained under a strictly periodic gravity modulation. Although the

imposed acceleration field, and hence the vorticity, average to zero, the vorticity itself can

be described by a random walk in time. Hence the mean squared vorticity in the center of

the cavity grows linearly in time with a diffusion coefficient given by,

(g2)T
Def f oc

where Ap is the imposed density difference across the cavity, and 7 is a damping coefficient

arising from viscous friction (of the order of v/L2), v is the kinematic viscosity of the fluid,

and L the side of the cavity. This is in contrast with the case of a deterministic and time

periodic acceleration in which the magnitude of the velocity remains bounded, even in the

absence of viscous dissipation.

At long times, viscous friction causes the velocity field to saturate to a finite value. The

flow reaches a statistical steady state of zero average velocity. The mean squaxed velocity

is nonzero but not proportional to the Rayleigh number squared, Ra 2. Instead, the scale of

the (statistical) steady state flow is characterized by a stochastic Rayleigh number R given

by,
ApL 2x/2 < g2 > "r

R=
nv/-ff

where n is the thermal diffusivity of the fluid. The value of R can be quite different from

Ra for a similar fluid, similar parameters of the cavity, and acceleration amplitude.

3 Motion of suspended particles and coarsening of solid-

liquid mixtures

We have also addressed the motion of a solid particle suspended in an incompressible fluid

of different density, when the fluid is subjected to a random acceleration field. This type
of motion has been termed inertial random walk because of the similarity with Brownian

motion. The equation of motion of the particle is quite simple, but it illustrates some

generic features of the interplay between the three time scales in this problem: the inverse

characteristic frequency of the driving acceleration, a viscous decay time, and the correlation

time of the noise. This relationship is best illustrated in the expression for the long time

value of the mean squared velocity of the particle,

where Ap = (pp - pf)/pp, pp and pf are the densities of the particle and of the fluid

respectively, "7= 97rrl/2ppR 2, with _ the shear viscosity of the fluid, and R the radius of the



particle. Two limiting behaviorsarisedependingon whether the viscous relaxation time

7 -1 is larger or smaller than the correlation tome of the noise. If _- >> 1/7 one recovers

the deterministic result according to which the velocity is inversely proportional to _, at

low frequencies, and decreases as 1/_ at high frequencies. In fact, such a dependence has

been widely used in the past to define tolerable levels of g-jitter as a function of frequency,

and is also one of the bases for the design of the International Space Station in terms of

the specifications for tolerable accelerations. On the other hand, for small _- the amplitude

of the fluctuations becomes independent of frequency and proportional to 1/'7 only. The

significance of this result, however, is that it is more generally valid for situations in which

the response of the system can be described by a single mode that responds additively to

the forcing. As a reference, we mention that realistic values of the correlation time are

T _ 1 S, whereas for example 7 _ 200 s -i for typical colloidal particles, but can be much

smaller than one for cavity flows. Finally, we note that this expression could be used to

independently determine the parameters that define g-jitter. Knowledge of this sort could

conceivably lead to the construction of an instrument that would complement the data set

currently provided by accelerometers.

Progress has also been achieved in connection with coarsening experiments in solid-

liquid mixtures. A residual acceleration field can produce a number of deleterious effects

on otherwise purely diffusive controlled coarsening. We have focused on two such effects:

effective inter-particle interactions induced by g-jitter, and corrections to mass transport in

the liquid phase due to convective flow induced by the jitter. In the Stokes or over-damped

limit, we have found that g-jitter induces an effective attraction between pairs of suspended

particles at large separations, and repulsion at short separations. The same phenomenology

is expected to occur between a suspended particle and a rigid wall. This effect originates in

the dependence of the hydrodynamic mobility tensor on inter-particle separation, and in the

fact that the same effective gravitational field is simultaneously acting on both particles.

We have also found that in the same limit of Stokes flow, g-jitter induced flows act to

renormalize the solute diffusivity. Both effects have been found to be negligible under the

conditions appropriate for the experiment Coarsening of Solid Liquid Mixtures (CSLM)

that is being carried out in microgravity.

4 Stochastic modulation of oscillatory instabilities

We have focused on the effect of g-jitter on an oscillatory instability (as it appears, for

example, in double diffusive convection at negative separation ratios) [8]. In general, at

a Hopf bifurcation in a periodically (and deterministically) modulated system, the trivial

state loses stability to either traveling or standing waves above onset depending on the am-

plitude of the modulation b. For sufficiently small modulation amplitudes, traveling waves

appear at a fixed value of the control parameter, an, independent of b. The threshold for

standing waves, however, is a decreasing function of b. We have analyzed how the existence

of a stochastic component in both an and b affects the nature of the bifurcation, as well as

the stability boundaries of the trivial state. Stability boundaries have been computed by

either solving the stationary Fokker-Planck equation on the center manifold of the under-

lying deterministic system whenever possible, or by direct numerical solution otherwise. If

the modulation amplitude has a stochastic component, the primary bifurcation is always



to standingwavesat a valueof the control parameterthat dependson the intensity of the
fluctuations. Moreprecisely,and to contrastour resultswith the caseof a deterministic
periodic forcing, the onsetof instability in the standingwaveregimeis shifted from its
deterministiclocation,andthe regionof primarybifurcationto travelingwavesdisappears,
yielding insteadstandingwavesat negativevaluesof the controlparameter. This study
hasprompteda reanalysisof the procedureof adiabaticeliminationof fast relaxingvari-
ablesneara bifurcationpoint whensomeof the parametersof thesystemarestochastically
modulated. Again, approximatestationarysolutionsof the Fokker-Planckequationhave
beenobtainednearthresholdfor pitchfork and transcriticalbifurcations.We havefound
that stochasticresonancebetweenfast variablesandthe randommodulationmayshift the
effectivebifurcationpoint by an amountproportionalto the intensityof the fluctuations.
We havealsoshownthat fluctuationsof the fast variablesabovethresholdarenot always
Ganssianand centeredaround the (deterministic)centermanifoldaswaspreviouslybe-
lieved. Numericalsolutionsobtainedfor a fewillustrativeexampleslendsupport to these
conclusions.

The essentialaspectsof the adiabaticreductionprocedurein the stochasticcasecan
be illustrated in the simplecaseof a secondordersystem.Let A be the amplitude of a

bifurcating mode, and B the amplitude of a second mode that is itself linearly stable near

onset. A reduced control parameter a is defined such that the trivial state A = B = 0 is

stable if a < 0, and unstable otherwise. Fluctuations in a are included through 'a stochastic

process _(t), which we assume Gaussian, white and of small intensity _. The evolution of

the system is now stochastic and is described by the joint probability density 7:'(A, B; t) at

time t. The reduction procedure starts by decomposing the joint density as

7:'(A, B; t) = p(B]A; t)P(A; t), (1)

where p(B[A; t) is the conditional probability density. Close to threshold, the stochastic

processes A and B are small (their intensity scales with some power of n) in such a way

that characteristic values of B/A .._ _a << 1, a > 0. This assumption also implies that the

two processes evolve over different characteristic temporal scales, fact that is reminiscent
of the separation of time scales present in the deterministic limit. As a consequence, the

probability densities P(A; t) and p(BIA; t) can be separately obtained at different orders in

_. The stationary density P(A) is then used to locate the effective threshold point in the

stochastic case. Below threshold, P(A) is a delta function at A = 0, whereas above threshold
there exists another normalizable solution that has some non vanishing moments. We have

derived approximate expressions for the stationary probability densities p(BIA ) and P(A)

valid near threshold for the pitchfork and transcritical bifurcations. In both cases, the

marginal density P(A) has to satisfy a normalizability condition that is used to determine

the location of onset me. In those cases in which ac _ O, stochastic resonance between the

fast variable B and the stochastic process {(_) is responsible for the shift away from the

deterministic threshold. This result generalizes earlier analyses of the normal form equation

corresponding to a pitchfork bifurcation with a fluctuating control parameter [9, 10], in

which coupling to fast variables was not considered. In agreement with our results below,

the absence of such coupling leads to me = 0 for any intensity of the fluctuating control

parameter.



5 Boundary layer flows induced by random vibration

We have examined the formation of viscous layers in a fluid which is in contact with a solid

boundary that is vibrated randomly. Consider a solid boundary being displaced with a

velocity uo(t) that is assumed prescribed, and modeled as a narrow band stochastic process.

First, we have considered an infinite planar boundary that is being vibrated along its own

plane to generalize the classical problem studied by Stokes [11]. In the monochromatic

limit, the variance of the velocity field decays exponentially away from the wall, with a

characteristic decay length given by the Stokes layer thickness _s = (2V/_'-_)1/2 , where v

is the kinematic viscosity of the fluid, and fl is the angular frequency of vibration of the

boundary. Since the equations governing the flow are linear, we were able to obtain an

analytic solution describing transient layer formation in the stochastic case, but only in

the neighborhood of the white and monochromatic noise limits. We have shown that for

any finite correlation time the stationary variance of the tangential velocity asymptotically

decays as the inverse squared distance from the wall, in contrast with the exponential decay

in the deterministic case. This asymptotic behavior originates from the low frequency

range of the power spectrum of the boundary velocity. The crossover from power law to

exponential decay is explicitly computed by introducing a low frequency cut-off in the power

spectrum. When the solid boundary is planar, the flow field averages to zero (the average

velocity of the boundary has been taken to be zero in all cases investigated), but its variance

decays algebraically with distance away from the wall. This dependence follows from a non

vanishing power spectrum of the boundary velocity at zero frequency. Introducing a low

frequency cut-off in the power spectrum wc leads back to the classical exponential decay,
with a rate that is determined by the cut-off frequency, Eq. (4). The amplitude of the

decaying variance depends explicitly on the dimensionless correlation time of the boundary

velocity, /3 = fiT. where _ is the dominant angular frequency of the power spectrum The

stationary value of the variance of the velocity is given by,

<u2(z,_,wc)> = 2/3e-Z(2_c)l/2 ( 1 (2wc)l/2 )+ --z +"" ' (2)

where terms that are of higher order than terms retained under the assumption that both 1/z

and (2we) 1/2 are small but independent have been neglected. For z >> 1, but z(2wc) 1/2 << 1

the dominant term in (2) is

< > 21_ I z(2wc)1/2<< I. (3)~  2)z2'

On the other hand, if z(2wc) 1/2 > 1, the leading order term is now a function of _ = z(2wc) 1/2

<u2(z,_,wc)> ,,, 4j3wce -¢ (1 1) (1+Z2 ) , ¢>__1. (4)

Equations (3) and (4) show that at distances that are large compared with the thickness

of the Stokes layer based on the dominant frequency _, <u2(z, fl)> decays algebraically

with z. There exists, however, a length scale z ,%0((2we) -1/2) beyond which the decay is

exponential. This new characteristic length scale is the thickness of the Stokes layer based on

the cut-off frequency. This conclusion appears natural given the principle of superposition

for the linear differential equation governing fluid flow in this case



We havealsoinvestigatedtwo additionalgeometriesin whichthe equationsgoverning
fluid flow are not linear, and haveshownthat severalof the genericfeaturesobtained
for the caseof a planar boundarystill hold. In the first case,we havegeneralizedthe
analysisof [12]concerningsecondarysteadystreaming.Hefoundthat theoscillatorymotion
of the boundaryinducesa steadysecondaryflow outsideof the viscousboundarylayer
evenwhenthe velocityof the boundaryaveragesto zero. If the thicknessof the Stokes
layer, 58, and the amplitude of oscillation, a, are small compared with a characteristic

length scale of the boundary L (Ss << L, a << L), then the generation of secondary steady

streaming may be described as follows. Vibration of the rigid boundary gives rise to an

oscillatory and nonuniform motion of the fluid. The flow is potential in the bulk, and

rotational in the boundary layer because of no-slip conditions on the boundary. The bulk

flow applies pressure at the outer edge of boundary layer, which does not vary across the

layer. The nonuniformity of the flow leads to vorticity convection in the boundary layer

through nonlinear terms. Both convection and the applied pressure drive vorticity diffusion,

and thus induce secondary steady motion which does not vanish outside of the boundary

layer. The stationary part of the ensemble average of the secondary velocity is found to be

nonzero, even though the boundary velocity averages to zero. In this case, we found that

the leading contribution to the average stationary velocity diverges logarithmically with

distance away from the boundary. In analogy to the planar case, the introduction of a low

frequency cut-off in the power spectrum of the boundary velocity changes the asymptotic
behavior qualitatively. The average stationary velocity asymptotes now to a constant, given

by Eq. (5). The asymptotic velocity explicitly depends on/_ and logarithmically on the

cut-off frequency. This asymptotic behavior is not reached until a length scale of the order

of the Stokes layer thickness that is based on the cut-off frequency. It is also of interest

to find the asymptotic value of the velocity away from the boundary. We find that the

tangential velocity for finite but small _c is,

-4 -_x _r(1 + _2) \ 1 +/32 + O(w2)'
(5)

where U(x) is the far field amplitude of the flow velocity.

We have finally anal)-zed the case of a periodically modulated solid boundary in the limit
in which the scale of the wall modulation is small compared to the thickness of the Stokes

layer, and also when the spatial amplitude of the boundary oscillation is small compared

with the wavelength of the wall profile. Cancellation of vorticity production over the wall

boundary leads to exponential decay of the fluid velocity away from the boundary, with a

decay length which is proportional to the wall wavelength, even if the zero frequency value

of the power spectrum of the boundary velocity is nonzero. If the boundary wavelen_h is

much larger than the Stokes layer thickness, we find steady streaming in the secondary flow

with two or four recirculating cells per wall period depending on _. On the other hand,

if the wavelength is much smaller than the Stokes layer thickness, only two recirculating

cells are formed regardless of the value of/_. Somewhat unexpectedly, the intensity of the

recirculation can both increase or decrease with/_.



6 Morphological stability analysis of directional solidification

into an oscillatory fluid layer

We have used the results of the previous section to study the stability of a planar solid-melt

boundary during directional solidification when the solid is being periodically vibrated in the

direction parallel to the boundary (or equivalently, under a far field uniform but oscillatory

flow parallel to the planar boundary). Our study is based on the natural separation of

time scales between the characteristic scale for the development of the instability near

threshold, and the relaxation time of the oscillatory flow for a given instantaneous interracial

configuration. The base flow field for a planar interface has a Stokes layer structure, and

does not alter the base solute distribution in the melt. A small perturbation of the interface

induces a secondary nonplanar flow, which we calculate to first order in the amplitude of

the interface perturbation. If the displacement of a fluid element far from the interface

is small compared with the critical wavelength for morphological instability, the secondary

flow has harmonic, sub-harmonic and steady components. At first order in the perturbation,

only steady and harmonic components couple back to the interface perturbation. For the

entire flow, including the steady part (also referred to as steady streaming), we adopt

a quasi-static approximation according to which the flow relaxes instantaneously for any

given configuration of the solid-melt interface. The steady streaming induces convection
of the base solute distribution. In addition, the oscillatory part of the seconddry flow also

induces an oscillatory component of the concentration field, and its nonlinear interaction

with the base oscillatory flow leads to additional mean solute transport. Both contributions

modify the mean solute distribution and therefore the instability threshold. The slowly

varying equation governing solute transport has been derived and used to obtain the neutral

stability surface for a moving solid-melt interface. We find both regions of stationary and

oscillatory instability. For small ratios of the viscous to solutal layer thicknesses, s, the

flow generally destabilizes the planar interface. For s _- 1, the flow stabilizes the stationary

branch, but it can also excite an oscillatory instability. For large s, the effect of the flow is

small.
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A Summary of accomplishments

Narrow band noise has been shown to describe many of the features of acceleration

data collected during space missions, and the parameters defining the noise model
have been obtained.

The scale of baroclinically induced flows when the driving acceleration is random is

not given by the Rayleigh number, but by a modified dimensionless group involving

the intensity of the fluctuations.

Spatially uniform g-jitter induces additional hydrodynamic forces among suspended

particles in incompressible fluids. These effective forces are attractive at long distances

and repulsive otherwise.

Stochastic modulation of the control parameter shifts the location of the onset of an

oscillatory instability. In addition, the bifurcation is to standing waves instead of to

traveling wa'¢es as in the unmodulated case.

Random vibration of solid boundaries leads to separation of boundary layers. In fact

the boundary layer completely disappears without a low frequency cut-off in the power

spectrum of the g-jitter. Steady streaming arises at long distances, similarly to the

case of periodic vibration. The structure of the boundary layer flows strongly depends

on the parameters of the noise.

Steady streaming ahead of a modulated solid-melt interface enhances solute transport,

and modifies the stability boundaries of a planar front. For small ratios of the viscous

to solutal layer s, the flow generally destabilizes the planar interface. For s _- 1, the

flow stabilizes the stationary branch, but it can also excite an oscillatory instability.

For large s, the effect of the flow is small.
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